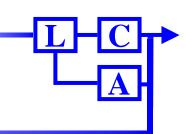
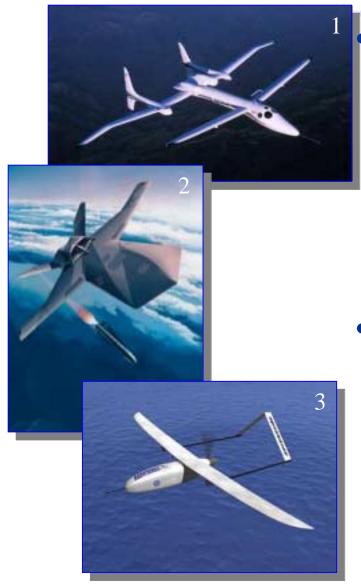
L C


UAV Control and Simulation


Princeton University

FAA/NASA Joint University Program

Quarterly Review - October, 2000

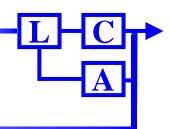


Outline

- Introduction
- A rule-based controller simulation
 - Rule-based scheduler presentation
 - Simulation architecture
 - Simulation results
- Control law for nonlinear UAV model
 - Nonlinear model
 - Trajectory tracking
 - Barrel roll test
- Concluding remarks

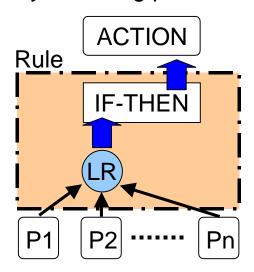
New UAV* Requirements

Foreseen UAV applications


- Unmanned Combat Air Vehicles
 - (Boeing / Lockheed Martin) ¹
- Wireless communications relay
 - (Proteus Scaled Composites) ²
- Meteorological probing
 - (Aerosonde) ³

Requirements

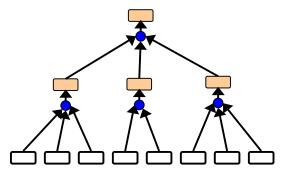
- Long and/or dangerous missions
- Team approach for increased reliability
 - Aircraft failure accommodation (task redistribution over remaining vehicles)
 - Concerted action (fly different paths for mutual support)


*Unmanned Air Vehicles

Rule-based Scheduler Presentation

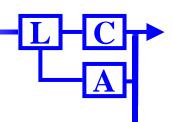
Rule base paradigm

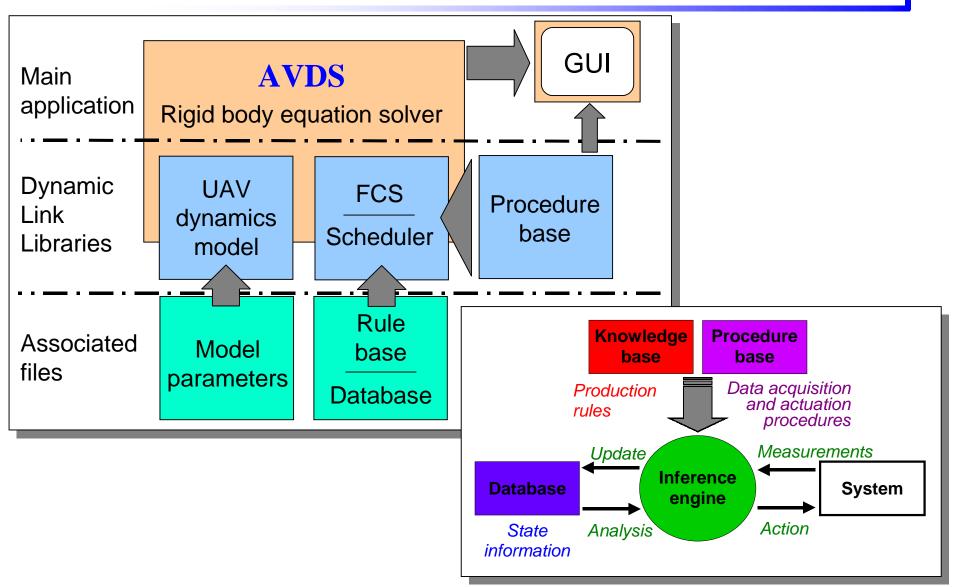
⇒ Production rules applied to a database storing the parameters by matching premises

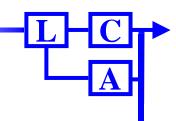

LR: Logical Relation (AND,OR)

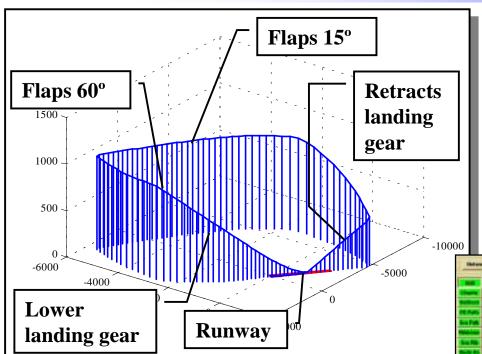
P1,...,Pn: Premises 1 to n

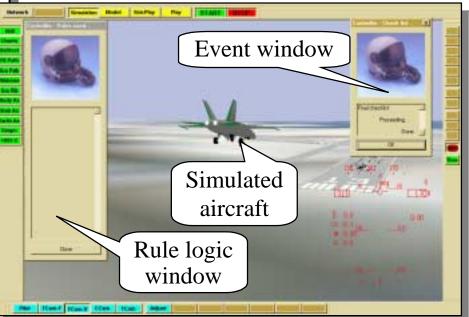
Action and Premises are either parameters or procedures returning a value.

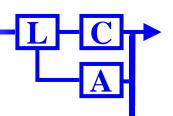

Rule-based scheduler


- 1 to 1 relation between actions and rules
- Hierarchical structure of rules


- Uses THEN or SYNC as logical relations between tasks
- Leaves of the tree are procedures representing subtasks while the root is the main task.
- Parameters take values:"Done", "Not Done"


Simulation Architecture


Simulation Results



- Airport traffic pattern flight simulation
 - Aircraft configuration
 - Waypoints sequence managed by the rule-base scheduler

- Simulation visual interface
 - Tools are provided for the user to follow the rule-based logic
 - Tools for user interaction with the simulation are under development

UAV Nonlinear Model

Assumptions

- Three time differentiable trajectory specified in earth coordinates, x_e(t)
- No sideslip

Notations

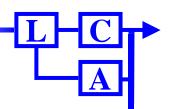
e - earth frame

b - body frame

w - wind frame

 \mathbf{H}_{1}^{2} - transformation from frame 1 to frame 2

I - inertia matrix


Dynamics equations

$$(1) \begin{cases} \ddot{\mathbf{x}}_{\mathbf{e}} = \mathbf{g} + \mathbf{H}_{\mathbf{w}}^{\mathbf{e}} \mathbf{f}_{w} \\ \dot{\mathbf{H}}_{\mathbf{w}}^{\mathbf{e}} = \mathbf{H}_{\mathbf{w}}^{\mathbf{E}} \hat{\boldsymbol{\omega}}_{\mathbf{w}} \end{cases}$$

$$(2) \begin{cases} \mathbf{f}_{\mathbf{w}} = \mathbf{f}_{\mathbf{w}}(\alpha, \beta, T) \\ \dot{\omega}_{\mathbf{b}} = \mathbf{I}^{-1} [\mathbf{m}_{\mathbf{b}} - \omega_{\mathbf{b}} \times \mathbf{I} \omega_{\mathbf{b}}] \\ \omega_{\mathbf{b}} = \mathbf{H}_{\mathbf{w}}^{\mathbf{b}}(\alpha, \beta) \omega_{\mathbf{w}} \end{cases}$$

See J. Hauser et al.,

Trajectory Tracking

State feedback linearization

- Desired trajectory third derivative:
$$\ddot{\mathbf{x}}_{\mathbf{e}}^{\mathbf{d}} = \mathbf{H}_{\mathbf{w}}^{\mathbf{e}} \begin{bmatrix} \omega_{w2} f_{w3} \\ \omega_{w3} f_{w1} \\ -\omega_{w2} f_{w1} \end{bmatrix} + \mathbf{H}_{\mathbf{w}}^{\mathbf{e}} \begin{bmatrix} \dot{f}_{w1} \\ -f_{w3} \omega_{w1} \\ \dot{f}_{w3} \end{bmatrix}$$

Linearizing control law:

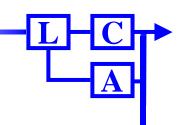
$$\begin{bmatrix} f_{w1} \\ -f_{w3}\omega_{w1} \\ f_{w3} \end{bmatrix} = \begin{bmatrix} -\omega_{w2}f_{w3} \\ \omega_{w3}f_{w1}/f_{w3} \\ \omega_{w2}f_{w1} \end{bmatrix} + \begin{bmatrix} 1 & 0 & 0 \\ 0 & -1/f_{w3} & 0 \\ 0 & 0 & 1 \end{bmatrix} \mathbf{H}_{\mathbf{w}}^{\mathbf{e}}^{\mathsf{T}} \begin{bmatrix} u_1 \\ u_2 \\ u_3 \end{bmatrix}$$

$$\mathbf{u} = \ddot{\mathbf{x}}_{\mathbf{e}}^{\mathbf{d}} + k_2(\ddot{\mathbf{x}}_{\mathbf{e}}^{\mathbf{d}} - \ddot{\mathbf{x}}_{\mathbf{e}}) + k_1(\dot{\mathbf{x}}_{\mathbf{e}}^{\mathbf{d}} - \dot{\mathbf{x}}_{\mathbf{e}}) + k_0(\mathbf{x}_{\mathbf{e}}^{\mathbf{d}} - \mathbf{x}_{\mathbf{e}})$$

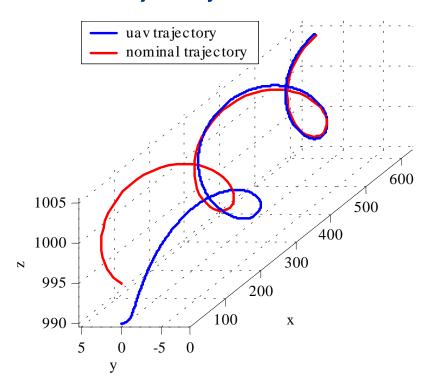
Nonlinear dynamic inversion

$$\dot{\omega}_{\mathbf{b}} = K(\omega_{\mathbf{b}}^{\mathbf{d}} - \omega_{\mathbf{b}})$$

$$= K\begin{bmatrix} 1 & 0 & \sin \alpha \\ 0 & 1 & 0 \\ 0 & 0 & \cos \alpha \end{bmatrix} \begin{bmatrix} \omega_{w1} \\ -2m\dot{f}_{w3}/(\rho SV^{2}C_{L\alpha}) \\ 2m\dot{f}_{w2}/(\rho SV^{2}C_{Y\beta}) \end{bmatrix}$$


$$\dot{m}_{\mathbf{b}} = \mathbf{I}\dot{\omega}_{\mathbf{b}} + \omega_{\mathbf{b}}\dot{\omega}_{\mathbf{b}}$$

$$\dot{f}_{w2} = -k_{\beta}f_{w2}$$

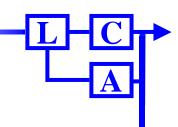

$$T = T(\alpha, f_{w1})$$

$$\mathbf{m}_{\mathbf{b}} = \mathbf{I}\dot{\omega}_{\mathbf{b}} + \omega_{\mathbf{b}} \times \mathbf{I}\omega_{\mathbf{b}}$$
$$\dot{f}_{w2} = -k_{\beta}f_{w2}$$
$$T = T(\alpha, f_{w1})$$


Barrel roll test



3D view of the UAV trajectory



Control inputs used

Concluding Remarks

Tools at our disposal:

- A control law to track trajectories specified in earth coordinates.
- A controller structure capable of logical reasoning.

Future work:

- Set up a multi-aircraft simulation.
- Use rule-based control to coordinate them.